進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 3 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0006-0908201016571300
論文名稱(中文) 太陽能電池之光電量測儀器研製與應用
論文名稱(英文) Development and Application of the Photoelectric Measuring Apparatuses for the Solar Cells
校院名稱 國立台北科技大學
系所名稱(中) 製造科技研究所
系所名稱(英) Graduate Institute of Manufacturing Technology
學年度 98
學期 2
出版年 99
研究生(中文) 翁兆廷
學號 97568013
學位類別 碩士
語文別 中文
口試日期 2010-07-27
論文頁數 126頁
口試委員 指導教授-丁振卿
指導教授-洪祖全
委員-湯華興
委員-楊台發
關鍵字(中) 太陽能電池
染料
TiO2
吸收光譜
四點探針
麥克森干涉儀
關鍵字(英) Solar Cells
Dye
TiO2
Absorption Spectrum
Four-Point Probe
Michelson Interferometer
學科別分類 學科別應用科學機械工程
中文摘要 本論文在探討自製太陽能電池之光電量測儀器,將各光電量測儀結合LabVIEW圖控程式以達到自動化量測目的,並應用於實驗室所自行開發的染料敏化奈米太陽能電池(DSSC)及商用非晶矽太陽能電池之光電量測,對各儀器量測結果進行比對及校正。本論文自行架設四點探針量測儀,針對市面上常見的探針材質進行測試及選擇,探針量測點之校正及ITO玻璃於不同燒結溫度下之阻值變化進行探討,得到鎢碳鋼探針量測結果最接近商用四點探針儀,量測結果顯示,在燒結溫度400℃下之ITO玻璃有較低的片電阻值。另外,本論文也自行架設太陽能電池之光電效率量測儀,針對不同濃度之市售染料、含葉黃素與花青素之天然染料及其混成雞尾酒染料所製成的DSSCs做一系列效率量測分析。添加染料為DSSC拓展吸收光譜並提高整體效率的方法,本研究自行架設一單頻光掃描光譜分析儀,以單頻光照射的方式分析太陽能電池之吸收光譜,分析太陽能電池在單頻光照射下之光電轉換效率(Incident Photon-to-Electron Conversion Efficiency, IPCE)關係,結果得知,加入染料後不但紫外光區之IPCE有提升,太陽能電池之吸收光譜擴展至500nm左右,部份染料並有吸收光譜紅移(Red Shift)的現象,但整體而言,DSSC在偏紅外光區無法順利將電子激發逸出;本研究另將IPCE量測儀結合LabVIEW圖控程式對商用非晶矽太陽能電池進行量測,其結果比對雙通道電錶相當符合,在600nm處有最佳IPCE值約10.5%。此外,實驗室自行開發噴霧鍍膜技術,製作DSSC之光電極TiO2薄膜,本論文更自行架設一麥克森干涉儀結合LabVIEW圖控程式進行光電極之厚度量測,並對兩束光重合度及標準厚度試片作校正及分析。
英文摘要 This article is focused on discussing the home-made photoelectric measuring apparatuses including their comparison and calibration. The home-made photoelectric measuring apparatuses are further integrated with the graphical programming language of LabVIEW for automation measurements and also applied in measurements of the laboratorial developed dye sensitized nano solar cell(DSSC) as well as commercial amorphous Si based photovoltaic solar cell. This article builds a four-point probe instrument to measure the electric sheet resistance of ITO glass sintered at different temperature. Many materials of probe are tested and yields that the measured data with tungsten steel probe has the closest approach with the commercial instrument. Calibration of the measured position and measurements of ITO glass at different sintering temperature show that the ITO glass sintered at 400℃ has the lower electric sheet resistance. Moreover, this article also builds a measuring instrument of photoelectric conversion efficiency for analysis of DSSCs with different concentrations of commercial dye, natural dyes including lutein and anthocyanin as well as their mixtures. Adding dye in DSSC is to expand its absorption spectra and further to increase its total efficiency. This article builds a scanning spectrometer to analyse absorption spectrum of the solar cells and the incident photon-to-electron conversion efficiency(IPCE). The results show that the IPCE in the region of UV light is increased, the absorption spectrum is expanded to ca. 500nm, absorption spectrum of red shift is appeared for some dyes due to the added dye. As a whole, the photoelectric effect of DSSC is not occurred in the region of infrared light. This article further integrates the home-made IPCE instrument with LabVIEW and determines the best IPCE value of ca. 10.5% at 600nm for commercial amorphous Si based solar cell. The result agrees to the measured data with dual-channel meter. Furthermore, this article builds a Michelson interferometer integrated with LabVIEW to measure the film thickness of photoelectrode, which is coated by the spray technique in our CCT laboratory. The home-made Michelson interferometer is also finished with calibration and analysis.
論文目次 摘要---------------------------------------------------i
ABSTRACT-----------------------------------------iii
誌謝---------------------------------------------------iv
目錄---------------------------------------------------vii
表目錄------------------------------------------------viii
圖目錄------------------------------------------------xiii
第一章 緒論----------------------------------------1
1.1 研究背景---------------------------------------1
1.2 文獻回顧---------------------------------------2
1.3 研究目的---------------------------------------9
第二章 基礎理論----------------------------------10
2.1 四點探針儀------------------------------------10
2.1.1 四點探針基本原理----------------------10
2.2 Michelson干涉儀-----------------------------13
2.2.1 雷射原理----------------------------------13
2.2.2 干涉原理----------------------------------15
2.2.3 Michelson干涉儀------------------------17
2.3 光電效應----------------------------------------18
2.3.1 半導體太陽能電池-----------------------19
2.3.2 染料敏化奈米太陽能電池---------------21
2.4 太陽能電池電力分析評估---------------------24
2.4.1 開路電壓與短路電流----------------------24
2.4.2 I-V曲線、填充因子與光電轉換效率--25
2.4.3 入射光子-電子轉換效率IPCE----------27
2.5 光譜分析-------------------------------------------29
第三章 實驗架設--------------------------------------33
3.1染料敏化奈米太陽能電池製作-----------------33
3.1.1 光電極製作-----------------------------------33
3.1.2 染料配置--------------------------------------36
3.1.3電解液調配------------------------------------39
3.1.4反電極製作------------------------------------39
3.2 四點探針儀結合LabVIEW量測之架設-----40
3.3 麥克森干涉膜厚量測儀結合LabVIEW量測之架設-------47
3.4 光電轉換效率量測儀結合LabVIEW量測之架設----------50
3.5 單頻光掃描光譜分析儀結合LabVIEW量測之架設-------53
3.6 吸收光譜量測儀架設-----------------------------57
第四章 結果與討論-------------------------------------59
4.1 自製四點探針儀-------------------------------------59
4.1.1 探針的材質選擇與校正-----------------------59
4.1.2 探針量測點選擇與校正-----------------------60
4.1.3 通入電流之量測解析度影響-----------------63
4.1.4 自製四點探針的應用與校正--------------------65
4.1.5 自製四點探針結合LabVIEW自動控制探討------------66
4.2 麥克森干涉膜厚量設儀---------------------------68
4.2.1 兩束光重合度影響分析------------------------68
4.2.2 麥克森干涉膜厚量測儀結合LabVIEW技術探討-------68
4.2.3 麥克森干涉膜厚量測儀應用與校正---------------73
4.3 IPCE量測儀--------------------------------------75
4.3.1 環境光影響分析------------------------------75
4.3.2 IPCE量測儀之應用----------------------79
4.3.2.1 染料浸泡濃度影響分析---------79
4.3.2.2 含葉黃素成份染料影響分析---------79
4.3.2.3 含花青素成份染料影響分析---------84
4.3.3 IPCE量測儀結合LabVIEW控制研究與校正----------87
4.4 光電轉換效率量測儀-------------------------------88
4.4.1 照光時間對光電轉換效率之影響--------------88
4.4.2 不同濃度染料DSSC之光電轉換效率測定------------91
4.4.3 含葉黃素DSSC之光電轉換效率測定--------------95
4.4.4 含花青素DSSC之光電轉換效率測定-------------97
4.4.5 儀器結合LabVIEW控制研究與校正-------------99
4.5 染料影響DSSC探討-------------------------------100
4.5.1 市售染料之吸收光譜------------------------100
4.5.2 含葉黃素天然染料之吸收光譜---------------------102
4.5.3 含花青素天然染料之吸收光譜---------------------102
4.5.4 茜素黃混合TCPP之吸收光譜------------------------103
4.5.5 紫甘藍混合菠菜之吸收光譜------------------------105
第五章 結論-----------------------------------------110
第六章 未來展望-----------------------------------112
參考文獻-------------------------------------------121
參考文獻 [1]C. B. Hatfield, ”Oil back on the global agenda,” Nature, vol. 387, 1997, pp. 121.
[2]Energy Information Administration, International Energy Outlook 2007, ashington: U.S. Department of Energy, 2007, pp. 29-58.
[3]呂鴻光,溫室氣體之衝擊與對策,台北:田園城市文化事業有限公司,2003,第1-10頁。
[4]蕭富元,天下雜誌,2007,第369期。
[5]陳致成、劉茂煌、陳金銘,「新型鋰離子電池正極材料合成方法」,工業材料,第二百零三卷,2003。
[6]F. Wenner, ”A method of measuring earth resistivity,” Bulletin of the Bureau of standards 12, 1915, pp. 469-478.
[7]L. B. Valdes, ”Resistivity measurements on germanium for transistors,” Proc. IRE 42, 1954, pp. 420-427.
[8]L. J. Van Der Pauw, ”A method of measuring specific resistivity and Hall effect of discs of arbitraty shape,” Phil. Res. Rep. 13, 1958, pp. 1-9.
[9]M. I. Current and M. J. Market, ”Mapping of iron implanted wafers,” in Iron implantation: Science and technology (J. F. Ziegler, ed.), Academic Press, Orlando, FL, 1984, pp. 487-536.
[10]劉新福、孫以材、劉東昇,四探針技術測量薄層電阻的原理及應用,中電網,河北工業大學微電子技術研究所,天津,中國,2004。
[11]D. S. Perloff, ”Four-point sheet resistance correction factors for thin rectangular samples,” Solid State Electronics, vol. 20, 1977, pp. 681-687.
[12]Y. C. Sun, W. Wang and H. B. Qu, ”Thickness correction for the measurement of the resistivity for micro-areas by using the improved Rymaszewski method with the square 113 four-point probe,” Nanotechnology and Precision Engineering, vol. 6, 2008, pp. 454-457.
[13]羅偉峻,固態食品導電度量測方法之探討,碩士論文,國立海洋大學食品科學系,基隆,2000。
[14]雷永泉等,新能源材料,台北縣:新文京開發出版股份有限公司,2004,第277-461頁。
[15]沈輝、曾祖勤,太陽能光伏發電技術,中國北京市:化學工業出版社,2005,第27-59頁。
[16]W. E. Spear and P. G. L. Comber , ”Substitutional doping of amorphous silicon,” Solid State Communications, vol. 17, 1975, pp. 1193-1196.
[17]R. Ruther, G. Kleiss and K. Reiche, ”Spectral effects on amorphous silicon solar module fill factors,” Solar Energy Materials and Solar Cells, vol. 71, 2002, pp. 375-385.
[18]M. A. Green, K. Emery, Y. Hishikawa andW.Warta, ”Solar cell efficiency tables,” Res. Appl., vol. 17, 2009, pp. 320-326.
[19]馮垛生主編,太陽能發電原理與應用,中國北京市:人民郵電出版社,2007。
[20]M. G. James and G. F. Virshup, ”31%-Efficient GaAs/Silicon mechanically stacked, multijunction concentrator solar cell,” Conference Record of the IEEE Photovoltaic Specialists Conference, vol. 1, 1988, pp. 754-758.
[21]R. Memming and B. Tributsch, ”Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes,” The Journal of Physical Chemistry, vol. 75, no. 4, 1971, pp. 562-570.
[22]A. Fujishima and K. Honda, ”Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, 1972, pp. 37-38.
[23]M. Gr‥atzel, ”Photoelectrochemical cells,” Nature, vol. 414, 2001, pp. 338-344.
[24]M. Gr‥atzel, ”Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology, vol. 65, 2003, pp. 145-153.
[25]S. Dai, J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong and K.Wang, ”Dye-sensitized solar cells, from cell to module,” Solar Energy Materials and Solar Cells, vol. 84, 2004, pp. 125-133.
[26]C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei and N. Cevey-ha, ”Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells,” Am Chem Soc, vol. 3, no. 10, 2009, pp. 3103-3109.
[27]C. C. Ting and W. S. Chao, ”Efficiency improvement of the DSSCs by building the carbon black as bridge in photoelectrode,” Applied Energy, vol. 87, 2010, pp. 2500-2505.
[28]A. S. Polo and N. Y. M. Ifa, ”Natural dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, vol. 80, 2006, pp. 209-214.
[29]T. A. Heimer, C. A. Bignozzi and G. J. Meyer, ”Molecular level photovoltaics: The electrooptical properties of metal cyanide complexes anchored to titanium dioxide,” Journal of Physical Chemistry, vol. 97, 1993, pp. 11987-11994.
[30]S. Ferrere, ”New photosensitizers based upon [Fe(L)2(CN)2] and [Fe(L)3] (L = substituted 2,2’-bipyridine): Yields for the photosensitization of TiO2 and effects on the band selectivity,” Chemistry of Materials, vol. 12, no. 4, 2000, pp. 1083-1089.
[31]徐英展、林建村,「染料敏化太陽能電池之染料設計與發展」,中央研究院週報,第1203期。
[32]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzman, V. Shklover and M.
Gr‥atzel, ”Nanocrystalline titanium oxide electrodes for photovoltaic applications,”
Journal of the American Ceramic Society, vol. 80, no. 12, 1997, pp. 3157-3171.
[33]N. J. Cherepy, G. P. Smestad, M. Gr‥atzel and J. Z. Zhang , ”Ultrafast electron injection: Implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode,” Journal of Physical Chemistry B, vol. 101, 1997, pp. 9342-9351.
[34]S. Ferrere, A. Zaban and B. A. Gregg , ”Dye sensitization of nanocrystalline tin oxide by perylene derivatives,” Journal of Physical Chemistry B, vol. 101, 1997, pp. 4490-4493.
[35]T. Horiuchi, H. Miura and S. Uchida , ”Highly efficient metal-free organic dyes for dyesensitized solar cells,” Journal of Photochemistry and Photobiology, vol. 164, 2004, pp. 29-32.
[36]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa , ”Highly efficient photon-to-electron conversion of mercurochrome-sensitized nanoporous ZnO solar sells,” Chemistry Letters, 2000, pp. 316-317.
[37]P. M. Sirimanne, M. K. I. Senevirathna, E. V. A. Premalal, P. K. D. D. P. Pitigala, V. Sivakumar and K. Tennakone, ”Utilization of natural pigment extracted from pomegranate fruits as sensitizer in solid-state solar cells,” Journal of Photochemistry and Photobiology, vol. 177, 2006, pp. 324-327.
[38]C. G. Garcia, A. S. Polo and N. Y. M. Iha , ”Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells,” Journal of Photochemistry and Photobiology, vol. 160, 2003, pp. 87-91.
[39]P. M. Sirimanne, M. K. I. Senevirathna, E. V. A. Premalal, P. K. D. D. P. Pitigala, V. Sivakumar and K. Tennakone, ”Utilization of natural pigment extracted from pomegranate fruits as sensitizer in solid-state solar cells,” Journal of Photochemistry and Photobiology, vol. 177, 2006, pp. 324-327.
[40]K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa, ”Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes,” Solar Energy Materials and Solar Cells, vol. 77, 2003, pp. 89-103.
[41]K. Wongcharee, V. Meeyoo and S. Chavadej , ”Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Solar Energy Materials and Solar Cells, vol. 91, 2007, pp. 566-571.
[42]T. Guaratini, K. H. M. Cardozo, E. Pinto and P. Colepicolo, ”Comparison of diode array and electrochemical detection in the C30 reverse phase HPLC analysis of algae carotenoids,” J. Braz. Chem. Soc., vol. 20, no. 9, 2009, pp. 1609-1616.
[43]M. Guo, P. Diao, Y. Ren, F. Meng, H. Tian and S. Cai , ”Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes,” Solar Energy Materials and Solar Cells , vol. 15, 2005, pp. 23-25.
[44]P. M. Sommeling, H. C. Rieffe, J. A. M. Van Roosmalen, Ach‥onecker, J. M. Kroon, J. A.Wienke and A. Hinsch, ”Spectral respones and IV-characterization of dye-sensitized nanocrystalline TiO2 solar cells,” Solar Energy Materials and Solar Cells , vol. 62, 2000, pp. 399-410.
[45]郭正鏞,應用於染料敏化太陽能電池之二氧化鈦薄膜與粉末製程及其特性研究,碩士論文,南台科技大學機械工程研究所,台南,2004。
[46]S. Cherian and C. C.Wamser, ”Adsorption and photoactivity of tetra(4-carboxyphenyl) porphyrin (TCPP) on nanoparticulate TiO2,” J. Phys. Chem. B, vol. 104, 2000, pp. 3624-3629.
[47]陳瓊興,LabVIEW 8.X與感測電路應用,台北縣:台科大圖書股份有限公司,2008。
[48]惠汝生,LabVIEW 8.X圖控程式應用,台北市:全華科技圖書股份有限公司,2006。
[49] K. S. Dieter, Semiconductor Material and Device Characterization, New York: John Wiley and Sons, 1998.
[50]王裕強,四點探針儀之設計與製作,碩士論文,國立中央大學機械工程研究所,桃園,1999。
[51]林三寶,雷射原理與應用,台北縣:全華圖書股份有限公司,2009,第30-37頁。
[52]楊國輝、黃宏彥,雷射原理與量測概論,台北市:五南圖書股份有限公司,2001,第120-123頁。
[53]張阜權、孫榮山、唐偉國 ,光學,新竹市:凡異出版社,1995。
[54]M. A. Green, S. R. Wenham and J. Zhao, ”Progress in high efficiency silicon cell and module research ,” Conference Record of the IEEE Photovoltaic Specialists Conference, 1992, pp. 8-13.
[55]施敏,現代半導體器件物理,中國北京市:科學出版社,2002。
[56]曾樹榮,半導體器件物理基礎,中國北京市:北京大學出版,2002。
[57] A. Hagfeld and M. Gr‥atzel, ”Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, 1995, pp. 49-68.
[58]傅思萍,染料敏化太陽能電池劣質化分析研究,碩士論文,國立台北科技大學,台北,2007。
[59]D. Cahen, G. Hodes, M. Gr‥atzel, J. F. Guillemoles and I. Riess, ”Nature of photovoltaic action in dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 104, no. 9, 2000, pp. 2053-2059.
[60]K. Kalyanasundaram and M. Gr‥atzel, ”Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, vol. 77, 1998, pp. 347-414.
[61]X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, Q. Sato and A. Fujishima, ”Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3- coated nanoporous TiO2 films,” Solar Energy Materials & Solar Cells, vol. 81, 2004, pp. 197-203.
[62]K. Kalyanasundaram and M. Gr‥atzel, ”Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, vol. 77, 1998, pp. 347-414.
[63]D. Cahen, G. Hodes, M. Gr‥atzel, J. F. Guillemoles and I. Riess, ”Nature of photovoltaic action in dye-sensitized solar cells,” J. Phys. Chem. B, vol. 104, 2000, pp. 2053-2059.
[64]L. L. Kazmerski, ”Photovoltaics: A review of cell and module technologies,” Renewable Sustainable Energy Rev., vol. 1, 1997, pp. 71-170.
[65]A. Zaban, S. Ferrere and B. A. Gregg, ”Relative energetics at the semiconductor/
sensitizing dye/electrolyte interface,” J. Phys. Chem. B, vol. 102, 1998, pp. 452-460.
[66]A. Zaban, A. Meier and B. A. Gregg, ”Electric potential distribution and short-range screening in nanoporous TiO2 electrodes,” J. Phys. Chem. B, vol. 101, 1997, pp. 7985-7900.
[67]S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Gr‥atzel and A. J. Frank, ”Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, vol. 101, 1997, pp. 2576-2582.
[68]S. A. Haque, Y. Tachibana, D. R. Klug and J. R. Durrant, ”Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias,” J. Phys. Chem. B, vol. 102, 1998, pp. 1745-1749.
[69]李偉呈,低價位雞尾酒染料敏化太陽能電池,碩士論文,國立台北科技大學化工所,台北,2008。
[70]莊嘉琛,太陽能工程-電池篇,台北市:全華科技圖書股份有限公司,1997,第134-178頁。
[71]蔡進譯,「超高效率太陽電池.從愛因斯坦的光電效應談起」,物理雙月刊,第二十七卷,第五期,2005,第701-719頁。
[72]D. A. Neamen, ”Semiconductor physics and devices,” Richard D. IRWIN, Inc., 1992.
[73]鄭揚霖,雞尾酒有機色素增感太陽電池之研究,碩士論文,國立成功大學化學工程學系,台南,2006。
[74]S. Itoa, H. Matsuib, K. Okadab, S. Kusanoc, T Kitamurad, Y. Wadad and S. Yanagidad, ”Calibration of solar simulator for evaluation of dye-sensitized solar cells,” Solar Energy Materials & Solar Cells, vol. 82, 2004, pp. 421-429.
[75]楊建人,光學原理,台北市:徐式文教基金會出版,1997,第38-45頁
[76]邱德仁,原子光譜分析,中國上海市:復旦大學出版社,2002,第237-242頁。
[77]呂正理,光譜之原理與應用,台北市:復漢出版社,1983,第92-97頁。
[78]J. R. Dyer,有機光譜分析,台北市:自然科學文化事業公司,1980,第4-11頁。
[79]F. L. Pedrotti, L. M. Pedrotti and L. S. Pedrotti, Introduction to Optics, New Jersey: Pearson International Edition, 2007, pp. 193-196。
[80]陳逸寧,基礎雷射全像術,台北市:全華科技圖書股份有限公司,2005。
[81]P. J. Sebasti′an, A. Olea, J. Campos, J. A. Toledo and S. A. Gamboa, ”Temperature dependence and the oscillatory behavior of the opto-electronic properties of a dyesensitized nanocrystalline TiO2 solar cell,” Solar Energy Materials & Solar Cells, vol. 81, pp. 349-361, 2004.
[82]M. Toivola, L. Peltokorpi, J. Halme and P. Lund, ”Regenerative effects by temperature variations in dye-sensitized solar cells,” Solar Energy Materials & Solar Cells, vol. 91, pp. 1733-1724, 2007.
[83]M. Berginc, U. O. Krasovec, M. Hocevar and M. Topic, ”Performance of dye-sensitized solar cells based on ionic liquids: Effect of temperature and iodine concentration,” Thin Solid Films, 2007.
[84]C. Peyratout and L. Daehne, ”Aggregation of thiacyanine derivatives on polyelectrolytes ,” Physical Chemistry Chemical Physics , vol. 4, 2002, pp. 3032-3039.
[85]過家好、何曉英、蔡生民、郭敏、陳秀英、彭孝軍,「甲醇對三甲川菁染料敏化TiO2納米晶電極的影響」,應用化學,第二十五卷,2008,第753-758頁。
[86]蔡昇佑,染料敏化太陽能電池研製與效率量測,碩士論文,國立台北科技大學製科所,台北,2007。
[87]周昀毅,天然色素染料敏化太陽能電池,碩士論文,國立台北科技大學有機高分子所,台北,2008。
[88]J. P. Thornber, ”Chlorophyll proteins: Light-harvesting and reaction centre components of plants,” Annual Review of Plant Physiology , vol. 26, 1975, pp. 127-158.
[89]P. K. D. D. P. Pitigala, M. K. I. Seneviratne, V. P. S. Perera and K. Tennakone, ”Sensitization of nanostructured TiO2 by electrostatic coupling of ionic dyes to ionic absorbates,” Langmuir, vol. 20, 2004, pp. 5100-5103.
[90]G. P. Smestad and M. Gr‥atzel, ”Demonstrating electron transfer and nanotechnology: A natural dye-sensitized nanocrystalline energy converter,” Journal of Chemical Education, vol. 75, 1998, pp. 752-756.
[91]Q. Dai and J. Rabani, ”Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium,” New Journal of hemistry , vol. 26, 2002, pp. 421-426.

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0006-1308200914372900
論文名稱(中文) 太陽能電池的光電量測技術開發
論文名稱(英文) Developing the Photoelectric Measuring Techniques of the Solar Cells
校院名稱 國立台北科技大學
系所名稱(中) 機電整合研究所
系所名稱(英) Graduate Institute of Mechatronic Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 邱迺鈞
學號 96408028
學位類別 碩士
語文別 中文
口試日期 2009-07-29
論文頁數 86頁
口試委員 指導教授-丁振卿
委員-楊台發
委員-鍾清枝
關鍵字(中) 太陽能電池
染料
TiO2
吸收光譜
Michelson干涉儀
關鍵字(英) Solar Cells
Dye
TiO2
Absorption Spectrum
Michelson Interferometer
學科別分類 學科別應用科學電機及電子
學科別應用科學機械工程
中文摘要 本論文主要對實驗室所自行開發的染料敏化奈米太陽能電池DSSC及商用非晶矽太陽能電池進行光電量測技術開發與量測,自行架設太陽能電池之光電效率量測儀,針對自製量測儀之光源輸出光譜、溫度控制及輸出功率誤差等進行探討,
與太陽光比較之光譜致合度以氙氣燈在800nm以內之光強皆在ASTM標準之內,複金屬燈與螢光燈在450-500nm波段超過標準之光強,在700-900nm波段的光則較弱。添加染料為DSSC拓展吸收光譜並提高整體效率的方法,本研究自行架設一單頻光掃描光譜分析儀,以單頻光照射的方式分析太陽能電池之吸收光譜,分析太陽能電池在單頻光照射下之光電轉換效率Incident Photo to Charge Carrier Generation Efficiency (IPCE)關係,由實驗結果得知,未加入染料之DSSC在光波長短於400nm之IPCE值為6.4%,加入染料後不但紫外光區之IPCE有提升,太陽能電池之吸收光譜擴展至500nm左右,部份染料並有吸收光譜紅移(Red Shift)的現象。整體而言,DSSC在偏紅外光區無法將電子激發逸出,而商用非晶矽太陽能電池吸收光譜則在600nm有最佳IPCE值約10.4%。另外,實驗室自行開發噴霧鍍膜技術,自製DSSC之光電極TiO2薄膜用噴霧法製作,本研究為探討噴霧厚度對DSSC輸出效率影響,自行架設一透光率量測儀與麥克森干涉儀進行光電極之厚度量測分析。結果顯示,使用噴霧法製作光電極TiO2薄膜在透光率68%時之光電轉換效率約為0.17%,使用Alpha-Step薄膜厚度輪廓測定儀發現噴霧製程之光電極TiO2薄膜表面粗糙度較高, 其厚度平均為3.487μm。
英文摘要 The research focused on developing photoelectric measuring techniques and measured home-made dye-sensitized nano solar cell (DSSC) as well as commercial Si based solar cell. The home-made measuring instrument of photoelectric conversion
efficiency discussed the influnce of light spectrum, temperature control, and error of output power. Spectrum of the Xe-lamp smaller than 800nm agrees to the sun in terms of the ASTM standard. Irradiance of the metal halide and fluorescent lamp are over at 450-500nm and less at 700-900nm. This paper self built a scanning spectrometer using filtering method for analysis of absorption spectrum and measured the incident photo to charge carrier generation efficiency (IPCE). Adding dye in TiO2 layer can expand the absorption spectrum of DSSCs. The results show that TiO2 alone absorbs wavelength shorter then 400nm of light and IPCE value ca. 6.4%. Adding dye in DSSC, the absorption spectrum is expanded to 500nm. The IPCE value in the ultraviolet region also increased. Some dyes cause red-shift of absorption spectrum.
In general, DSSC can not be excitated in infrared light field. The commercial Si based solar cell has good IPCE ca.10.4% at 600nm. Moreover, this work used spraying technique for TiO2 layer coating, The influence of transmittance and thickness were also discussed, and obtained the best photoelectric conversion efficiency ca. 0.17% at
68% transmittance. The Alpha-Step profilometer determined the thickness of TiO2 layer ca. 3.487μm at 68% transmittance.
論文目次 摘要i
ABSTRACTii
誌謝iii
目錄v
表目錄 vi
圖目錄 ix
第一章 緒論1
1.1 研究背景1
1.2 文獻回顧2
1.3 研究目的6
第二章 基礎理論8
2.1 光電效應8
2.1.1 半導體太陽能電池9
2.1.2 染料敏化奈米太陽能電池11
2.2 光輻射與光亮度13
2.3 太陽能電池電力分析評估14
2.3.1 開路電壓與短路電流14
2.3.2 IV曲線、填充因子與光電轉換效率15
2.3.3 入射光轉換效率IPCE16
2.4 光譜分析17
2.5 麥克森干涉儀21
2.5.1 雷射原理21
2.5.2 麥克森干涉儀23
2.6 太陽能電池ASTM規範26
第三章 實驗架設29
3.1染料敏化奈米太陽能電池製作29
3.1.1 光電極製作29
3.1.2 染料配置32
3.1.3電解液調配32
3.1.4反電極製作33
3.2 光電轉換效率量測儀架設33
3.3 吸收光譜儀量測架設34
3.4 單頻光掃描光譜分析儀架設36
3.5 透光率量測儀架設37
3.6 麥克森干涉儀架設37
第四章 結果與討論44
4.1 光電轉換效率量測儀探討44
4.1.1 光源之光譜分析44
4.1.2 標準光譜致合度與穩定性分析46
4.1.3 儀器誤差值探討47
4.1.3.1 溫度影響47
4.1.3.2 IV Curve量測儀影響49
4.1.3.3 光功率量測儀(Powermeter)影響52
4.1.4 DSSCs之效率量測54
4.2 單頻光掃描光譜分析儀探討55
4.2.1 色散及濾光片之分光技術55
4.2.2 染料之吸收光譜分析58
4.2.3 太陽能電池吸收光譜分析58
4.3 透光率量測儀探討64
4.3.1 DSSC之光電極透光率影響效率分析64
4.4 Michelson干涉儀量測膜厚探討67
4.4.1 干涉條紋影像擷取與條紋圈數計算67
4.4.2 Michelson干涉量測儀誤差值探討71
4.4.2.1 光計數器與定位馬達71
4.4.2.2 光電極厚度量測71
第五章 結論78
第六章 未來展望80
參考文獻81
參考文獻 1. C. B. Hatfield, "Oil back on the global agenda", Nature, vol. 387, 1997, pp. 121.

2. A. L. Gore著,張瓊懿譯,不願面對的真相 (An Inconvenient Truth),2007年,ISBN:9789861248547。

3. D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", Journal of Applied Physics, vol. 25, 1954, pp. 676-677.

4. 許招墉,光電工學概論,台北縣:全華圖書股份有限公司,2007, 第46-56頁。

5. 郭培源、付揚,光電檢測技術與應用,中國北京市:五南圖書出版股份有限公司,2008, 第53-59頁。

6. 雷永泉等編著,新能源材料,台北縣:新文京開發出版股份有限公司,2004,第277-461頁。

7. 沈輝、曾祖勤,太陽能光電技術,台北市:北京航空航天大學出版社,2006, 第1-6頁。

8. W. E. Spear and P. G. Le Comber, "Substitutional doping of amorphous silicon", Solid State Communications, vol. 17, 1975, pp. 1193-1196.

9. R. Ruther, G. Kleiss, and K. Reiche, "Spectral effects on amorphous silicon solar module fill factors", Solar Energy Materials and Solar Cells, vol. 71, 2002, pp. 375-385.

10. M. Grätzel, "Photoelectrochemical Cells", Nature, vol. 414, 2001, pp. 338-344.

11. M. G. James and G. F. Virshup, "31\%-Efficient GaAs/Silicon Mechanically Stacked, Multijunction Concentrator Solar Cell", Conference Record of the IEEE Photovoltaic Specialists Conference, vol. 1, 1988, pp. 754-758.

12. R. Memming and B. Tributsch, "Electrochemical investigations on the spectral
sensitization of gallium phosphide electrodes", The Journal of Physical Chemistry, vol. 75, no. 4, 1971, pp. 562-570.

13. A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode", Nature, vol. 238, 1972, pp. 37-38.

14. M. Grätzel, "Dye-sensitized solar cells", Journal of Photochemistry and Photobiology,
vol. 65, 2003, pp. 145-153.

15. S. Dai, J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong, and K. Wang, "Dye-sensitized solar cells,from cell to module", Solar Energy Materials and Solar Cells, vol. 84, 2004, pp. 125-133.


16. A. S. Polo and N. Y. M. Ifa, "Natural dyes as photosensitizers for dye-sensitized solar cell",
Solar Energy, vol. 80, 2006, pp. 209-214.

17. 徐英展、林建村,「染料敏化太陽能電池之染料設計與發展」,
中央研究院週報,第1203期。

18. N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, "Ultrafast electron injection: Implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized
TiO2 nanocrystalline electrode", Journal of Physical Chemistry B, vol. 101, 1997, pp. 9342-9351.


19. S. Ferrere, A. Zaban, B.A.Gregg, "Dye sensitization of nanocrystalline tin oxide by perylene derivatives", Journal of Physical Chemistry B, vol. 101, 1997, pp. 4490-4493.

20. T. Horiuchi, H. Miura, and S. Uchida, "Highly efficient metal-free organic dyes for dye-sensitized solar cells", Journal of Photochemistry and Photobiology, vol. 164, 2004, pp. 29-32.


21. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, "Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells", Chemistry Letters, 2000, pp. 316-317.

22. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, "Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes" , Solar Energy Materials and Solar Cells, vol. 77, 2003, pp. 89-103.

23. K. Wongcharee, V. Meeyoo, and S. Chavadej, "Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers", Solar Energy Materials and Solar Cells, vol. 91, 2007, pp. 566-571.

24. M. Guo, P. Diao, Y. Ren, F. Meng, H. Tian, and S. Cai, " Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes", Solar Energy Materials and Solar Cells, vol. 15, 2005, pp. 23-25.

25. P. M. Sommeling, H. C. Rieffe, J. A. M. van Roosmalen, Ach"{o}necker, J. M. Kroon, J. A. Wienke, amd A. Hinsch , "Spectral respones and IV-characterization of dye-sensitized nanocrystalline TiO2 solar cells", Solar Energy Materials and Solar Cells, vol. 62, 2000, pp. 399-410.

26. 郭正鏞,應用於染料敏化太陽能電池之二氧化鈦薄膜與粉末製程及其特性研究,碩士論文,南台科技大學機械工程研究所,台南,2004。

27. S. Cherian, and C. C. Wamser, "Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on
Nanoparticulate TiO2", J. Phys. Chem. B, vol. 104, 2000, pp. 3624-3629.

28. 吳登峻、吳鴻森,量測資訊,新竹市:工研院量測中心,2009。

29. 賴耿陽,雷射光學基礎,台南市:復漢出版社,1992, 第161-165頁。

30. 高堅志,實用雷射技術,台北市:文笙書局股份有限公司,1994, 第35-48頁。

31. }陳席卿,雷射原理與光電檢測,台北市:全華科技圖書股份有限公司,2003,
第4-12頁。

32. 張阜權、孫榮山、唐偉國,光學,新竹市:凡異出版社,1995。

33. M. A. Green, S. R. Wenham, and J. Zhao, "Progress in high efficiency silicon cell and module research", Conference Record of the IEEE Photovoltaic Specialists
Conference}, 1992, pp. 8-13.

34. 施敏,現代半導體器件物理,中國北京市:科學出版社,2002。

35.曾樹榮,半導體器件物理基礎,中國北京市:北京大學出版,2002。

36. A. Hagfeld and M. Grätzel, "Light-induced redox reactions in nanocrystalline
systems", Chemical Reviews, vol. 95, 1995, pp. 49-68.

37. K. Kalyanasundaram and M. Grätzel, "Applications of functionalized transition metal
complexes in photonic and optoelectronic devices", Coordination Chemistry Reviews, vol. 77, 1998, pp. 347-414.

38. X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, Q. Sato, and A. Fujishima, "Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3 coated nanoporous TiO2 films", Solar Energy Materials & Solar Cells, vol. 81, 2004, pp. 197-203.

39. G. Thuillier, P. C. Simon, D. Labs1, R. Pastiels, and H. Neckel, " An instrument to measure the solar spectrum from 170 to 3200 nm on board Spacelab", Solar Physics, vol. 74, 1981, pp.
531-537.

40. 李碩重,照明設計學,台北市:全華科技圖書股份有限公司,1993。

41. G. Boyle, Renewable Energy, Stock: Oxford University Press, 2004, pp. 89-136.

42. G. P. Smestad, "Education and solar conversion: Demonstrating electron transfer", Solar Energy Materials and Solar Cells, vol. 55, 1998, pp. 157-178.

43. 莊嘉琛,太陽能工程-電池篇,台北市:全華科技圖書股份有限公司,1997,第134-178頁。

44. 蔡進譯,「超高效率太陽電池 .從愛因斯坦的光電效應談起」,物理雙月刊,27卷五期,2005,第701-719頁。

45. D. A. Neamen, "Semiconductor Physics and Devices", Richard D. IRWIN, Inc. , 1992.

46. 鄭揚霖,雞尾酒有機色素增感太陽電池之研究,碩士論文,國立成功大學化學工程學系,台南,2006。

47. S. Itoa, H. Matsuib, K. Okadab, S. Kusanoc, T Kitamurad, Y. Wadad, and S. Yanagidad, "Calibration of solar simulator for evaluation of dye-sensitized solar cells", Solar Energy Materials & Solar Cells, vol. 82, 2004, pp. 421-429.

48. 楊建人,光學原理,台北市:徐式文教基金會出版,1997,第38-45頁。

49. 邱德仁,原子光譜分析,中國上海市:復旦大學出版社,2002,第237-242頁。

50. 呂正理,光譜之原理與應用,台北市:復漢出版社,1983,第92-97頁。

51. J. R. Dyer,有機光譜分析,台北市:自然科學文化事業公司,1980,第4-11頁。

52. 楊國輝,黃宏彥,雷射原理與量測概論,台北市:五南圖書出版有限公司,2001,第120-123頁。

53. ASTM E927-05, "Standard Specification for Solar Simulation for Photovoltaic Testing", 2005.

54. P. J. Sebastian, A. Olea, J. Campos, J. A. Toledo, and S. A. Gamboa, "Temperature Dependence and the Oscillatory Behavior of the Opto-Electronic Properties of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell", Solar Energy Materials & Solar
Cells, vol. 81, pp. 349-361, 2004.

55. M. Toivola, L. Peltokorpi, J. Halme, and P. Lund, "Regenerative Effects by Temperature Variations in Dye-Sensitized Solar Cells", Solar Energy Materials & Solar Cells, vol. 91, pp. 1733-1724, 2007.

56. M. Berginc, U. O. Krasovec, M. Hocevar, and M. Topic, "Performance of dye-sensitized solar cells based on Ionic liquids: Effect of temperature and iodine concentration", Thin Solid Films, 2007.

57. 陳逸寧, 基礎雷射全像術,台北市:全華科技圖書股份有限公司,2005。

58. 章詒學、何華焜、陳江韓, 原子吸收光譜儀,中國北京市:化學工業出版社,2007,第36-40頁。

59. F. L. Pedrotti, L. M. Pedrotti, and L.S. Pedrotti, Introduction to Optics, New Jersey :Pearson International Edition, 2007, pp. 193-196。

60. 丁均怡、左培倫、任貽均等,光學元件精密製造與檢測,新竹市:國研院儀器科技研究中心,2007。

61. C. Peyratout and L. Daehne, Aggregation of thiacyanine derivatives on polyelectrolytes
', Physical Chemistry Chemical Physics, vol. 4, 2002, pp. 3032-3039,.

62. 過家好,何曉英,蔡生民,郭敏,陳秀英和彭孝軍,「甲醇對三甲川菁染料敏化TiO2納米晶電極的影響」,應用化學,vol. 25, 2008,第753-758頁。

63. 張錚,matlab 教學範本程序設計與應用,台北縣:加樺國際有限公司,2007。

64. R. C. Gonzalez and R. E. Woods,Digital Image Processing 2/e,台北市:台灣培生教育出版股份有限公司,2004。

65. A. McAndrew,數位影像處理,台北縣:高立圖書有限公司,2008。


------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0006-3008200713501700
論文名稱(中文) 染料敏化奈米太陽能電池研製與效率量測
論文名稱(英文) Manufacture of dye-sensitized nano solar cells and their efficiency measurements
校院名稱 國立台北科技大學
系所名稱(中) 製造科技研究所
系所名稱(英) Graduate Institute of Manufacturing Technology
學年度 95
學期 2
出版年 96
研究生(中文) 蔡昇佑
學號 94568026
學位類別 碩士
語文別 中文
口試日期 2007-07-27
論文頁數 100頁
口試委員 指導教授-丁振卿
委員-李靖男
委員-鐘清枝
關鍵字(中) 太陽能電池
染料
TiO2
光電效率量測儀
掃描式吸收光譜分析儀
關鍵字(英) Solar cells
dye
TiO2
instrument for measurements of photoelectric conversion efficiency
scanning absorption spectrum analyzer
學科別分類 學科別應用科學機械工程
中文摘要 染料敏化奈米太陽能電池的研製,主要針對四項組成元件:光電極、染料、電解質及反電極進行研究,探討不同材料對效率所造成的影響。在光電極方面,幾種不同奈米顆粒薄膜中,以ZnO表現出最差的光電轉換能力,TiO2的兩種晶型光電轉換特性差異不大。當燒結溫度越高,電池的光電轉換效率明顯上升,其中以加熱至450C的光電轉換效率較佳。在染料方面,本研究以隔水加熱粹取天然植物的染料進行研究,並以未加染料的情形相比較,結果顯示,對於擁有較高類胡蘿蔔素的植物而言,具有較佳的光電轉換效率且添加染料能大幅提升光電轉換效率,而增強的光電轉換效率與染料的吸收光譜有關。染料濃度對敏化奈米太陽能電池光電轉換特性並無明顯影響。若以Chlorophyll
和Alizarin、Alizarin Red及Alizarin Yellow多種染料製備成混合染料使用,所製成的太陽能電池,其光電極從陽極變為陰極,反電極則轉換成陽極,形成一個反向迴路。在電解質方面,以液態電解液為主,為I_2、KI及Propylenecarbonate的混合溶液。在反電極製作上,比較各種金屬~(非貴重金屬)與非金屬材料,以含碳電極擁有較佳的光電轉換特性。以碳黑及石墨兩種碳類材料混合,當碳黑的比例越高時,所呈現的光電轉換效率就越高。為提高碳電極附著力而混合少量半導體粉末時,明顯提高短路電流。製作時將碳電極
,持續燒結三十分鐘,在染料敏化電池光電特性表現上,以燒結至450C時得到較好的光電轉換效率與填充因子。在進行各部份元件的研究探討上,主要以光電池的效率為基準,本實驗自組光電效率量測儀及掃描式吸收光譜分析儀,對於太陽能電池效率量測方面,所使用的太陽光模擬燈源,以複金屬燈之光譜與太陽光的光譜最為接近,其中在紫光與藍光區段的符合性最高;另外,掃描式吸收光譜分析儀主要在進行單色光掃描,目前已能分離製作出11種不同的窄頻光做為量測光源用。
英文摘要 The manufacturing process of dye-sensitized nano solar cells was focused on the four main constituents, which are the photoelectrode, the dye, the electrolyte, and the counter electrode. The photoelectrode: In comparison with some photoelectrodes show that the $ZnO$ photoelectrode has poor photoelectric conversion efficiency as well as the two different kinds of TiO2 crystals photoelectrodes have higher photoelectric conversion effiecencies and slight difference each other. The results show that the higher sintering temperature of photoelectrode is, the higher photoelectric conversion efficiency is. The best effective sintering temperature of photoelectrode in this work is 450C. The dye: This work applied the natural dyes, which were extracted from the plants using the indirect hydronic heating method. The results show that the higher
contents of carotene for dyes are, the higher photoelectric
conversion efficiencies are. The photoelectrodes with dyes are compared with the no-dyes photoelectrodes and receives that the dyes can promote the photoelectric conversion efficiency. The added photoelectric conversion efficiency is related to absorption spectrum of the dyes. The obvious influence of dyes concentration was not found in this work. The application of mixed dyes with chlorophyll, Alizarin, Alizarin Red, and Alizarin Yellow will cause the solar cell's inverse current during shining. The electrolyte uses the liquid mixture of I2, KI, and Propylenecarbonate. The counter electrode: In comparison with various metal and non-metal materials receives the results that the carbon made electrodes have the better photoelectric conversion efficiencies. The manufacture of carbon counter electrode normally uses the mixture of carbon black and graphite as originl materials.The carbon electrode used semiconductor powder as additive to enhance the adhesion each other. The mixed carbon electrode will be sintered in 30 minutes and the sintering temperature of 450c has the better photoelectric conversion efficiency in this work. The mixture show the results that the higher ratio of carbon black is, the better photoelectric conversion efficiency and the fill factor are. An strument for measurements of photoelectric conversion efficiency and a scanning absorption spectrum analyzer, which used a metal halide lamp asthe light source due to its better fitted spectrum on the purple and blue fields with the solar spectrum, are built in the work. The scanning absorption spectrum analyzer has already created 11
kinds of light with narrow range frequency.
論文目次 中文摘要 I
英文摘要 IV
誌謝 V
目錄 VIII
表目錄 IX
圖目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究目的 5
第二章 基礎理論 7
2.1 太陽能電池的性能評估 7
2.1.1 開路電壓與短路電流 7
2.1.2 I-V曲線與填充因子(Fill factor) 7
2.1.3 總光電轉換效率與單色光光電轉換效率 7
2.2 染料敏化太陽能電池 10
2.2.1 電池組成與光電轉換原理 10
2.2.2 奈米半導體電極 12
2.2.3 敏化染料 14
2.2.3.1 物質對光的吸收 15
2.2.3.2 用於染料敏化太陽能電池的染料 17
2.2.4 電解質 20
2.2.5 反電極 20
2.3 光譜與光譜儀原理 21
2.3.1 光的吸收 21
2.3.2 光譜 22
2.3.3 基本架構 22
2.3.3.1 色散系統 22
2.3.3.2 色散原理 23
第三章 實驗方法與步驟 28
3.1 實驗材料與設備 28
3.1.1 材料 29
3.1.2 實驗設備 30
3.2 奈米光電板製作 32
3.2.1 製程步驟 32
3.2.1.1 導電玻璃的清洗 32
3.2.1.2 二氧化鈦凝膠製備與塗佈 32
3.2.1.3 染料萃取 34
3.2.1.4 製備反電極 34
3.2.1.5 電解質調配與封裝 36
3.3 染料吸收光譜量測 37
3.3.1 量測步驟 37
3.3.2 燈源選擇 38
3.3.3 溶劑 39
3.3.4 比色槽 39
3.4 I-V曲線量測 40
3.4.1 模擬燈源選擇 40
3.4.2 系統架設 40
3.5 掃描式吸收光譜儀架設 41
3.5.1 準直與色散系統架設 41
3.5.2 單色光擷取與放大 41
第四章 實驗結果與討論
4.1 光源之光譜量測 46
4.1.1 太陽光譜量測 46
4.1.2 模擬燈源測試與比較 47
4.1.2.1 鎢絲燈與鹵素燈 47
4.1.2.2 日光燈 47
4.1.2.3 複金屬燈 48
4.2 奈米半導體薄膜 51
4.2.1 不同材料的奈米半導體薄膜對染料敏化奈米太陽能電池之電性分析 51
4.2.2 奈米半導體薄膜不同燒結溫度對染料敏化奈米太陽能電池的電性分析 53
4.3 染料 57
4.3.1 不同染料對染料敏化奈米太陽能電池的電性分析 57
4.3.2 單色光之光電轉換效率分析 60
4.3.2.1 單色光製作 60
4.3.2.2 單色光轉換效率分析 60
4.3.3 染料濃度對染料敏化奈米太陽能電池的電性分析 62
4.3.4 混合染料對染料敏化奈米太陽能電池的電性分析 66
4.3.4.1 單一染料 66
4.3.4.2 混合染料 69
4.4 反電極 70
4.4.1 不同反電極製作之光電池的電性比較 71
4.4.1.1 未照光之電性分析 71
4.4.1.2 照光之電性分析 74
4.4.2 不同組合比例之碳系材料電極對光電池的影響 76
4.4.2.1 石墨與碳黑的混合 76
4.4.3 碳系材料添加其他元素之電極 80
4.4.4 碳電極燒結溫度 80
4.5 間隙片(Spacer) 82
4.6 光源強度 84
第五章 結論 89
第六章 未來展望 92
參考文獻 100
參考文獻 1.Energy Information Administration,International Energy Outlook 2007,Washington:U.S. Department of Energy, 2007, pp. 29-58.
2.黃啟峰,二氧化碳與地球暖化,科學發展,第四百一十三期,2007,第6-12頁。
3.朱信、簡聰文,燃燒與空氣污染,科學發展,第三百五十五期,2002,第18-21頁。
4.施顏祥等編著,能源技術-如何有效使用能源,台北市:聯經出版事業公司,1985,第10-25頁。
5.李文興、顏文治,向太陽借能量-熱能應用,科學發展},2004,第三百八十三期,第44-49頁。
6.雷永泉等編著,新能源材料,台北縣:新文京開發出版股份有限公司,2004,第277-461頁。
7.R.Memming and B.Tributsch,"Electrochemical Investigations on the Spectral Sensitization of Gallium Phosphide Electrodes," The Journal of Physical Chemistry, vol.75,no.4,1971,pp.562.
8.B.O Regan and M.Gratzel,"A low-cost,high-efficiency solar cells based on dye-sensitized colloidal TiO2 films,"Nature,vol.353,1991,pp.737-740.
9.Y.C.Shen,L.Wang,Z.Lu,Q.Zhou,H.Mao,and H.Xu,"Fabrication, characterization and photovoltaic study of a TiO2 microporous electrode,"Thin Solid Film", vol. 257,
1995, pp. 144-146.
10.崔曉莉、江志裕,納米TiO2製備方法,化學進展,第十四卷,第五期,2002,第325-331頁。
11.劉春平等人,染料敏化太陽能電池中的納米TiO2多孔膜研究進展,化工時刊,第十九卷,第八期,2005,第35-39頁。
12.M.K.Nazeeruddin,A.Kay,I.Rodicio,R.H.Baker,E.Miiller,
P.Liska,N.Vlachopoulos,and M.Gratzel,"Conversion of light
to electricity by cis-X_2Bis(2,2'-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X =C1-,Br-,I-,CN-,and SCN-) on nanocrystalline TiO2 electrodes,"J. Am. Chem.Soc.,vol.115,no.14,1993,pp.6382-6390.
13.Y.Li,J.Hagen,W.Schaffrath,P.Otschik,and D.Haarer,"Titanium dioxide films for photovoltaic cells derived from a solDgel process,"Solar Energy Materials and Solar Cells,"vol.56,1999,pp.167-174.
14.M.Gomez,J.Rodrimguez,S.Tingry,A.Hagfeldt,S.E.Lindquist, and C.G.Granqvist,"Photoelectrochemical effect in dye sensitized,sputter deposited Ti oxide films:The role of
thickness-dependent roughness and porosity,"Solar Energy
Materials and Solar Cells, vol. 59, 1999, pp. 277-287.
15.M. Okuya,K.Nakade,and S.Kaneko,"Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells,"Solar Energy Materials and Solar Cells,vol.70,2002, pp.425-435.
16.M.Krunks,and E.Mellikov,"Zinc oxide thin filmsby the spray pyrolysis method,"Thin Solid Films,vol.270,1995,pp. 33-36.
17.L.D. Kadam, and P.S. Patil, "Studies on electrochromic properties of nickel oxide thin lms prepared by spray pyrolysis technique,"Solar Energy Materials and Solar Cells,vol.69,2001,pp.361-369.
18.J.M.Ortega, A.I.Martinez,D.R.Acosta,and C.R. Magana,"Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis,"Solar Energy Materials and Solar Cells,vol.90,2006,pp.2471-2479.
19.G.K.Mor,K.Shankar,M.Paulose,O.K.Varghese,and C.A.Grimes,"Use of highly-ordered TiO2 nanotube arrays in
dye-sensitized solar cells,Nano Letters,vol.6,no.2,2006, pp.215-218.
20.M.Adachi,Y. Murata,J.Takao,J.Jiu,M.Sakamoto,and F.Wang,"Highly efficient dye-sensitized solar cells with a
titania thin-film electrode composed of a network tructure of single-crystal-like TiO2 nanowires made by the oriented
attachment mechanism,"J.AM.CHEM.SOC.,vol.126,2004,pp.14943-14949.
21.M.Matsumura,S.Matsudaira,and H.Tsubomura,"Dye sensitization and surface structures of semiconductor
electrodes,"Ind.Eng.Chem.Prod.Res.Dev.,vol.19,1980,pp.415-421.
22.K.Keis,E.Magnusson,H.Lindstrom,S.E.Lindquist,and A.Hagfeldt,A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes,Solar Energy Materials and Solar Cells,vol.73,2002,pp.51-58.
23.R.Katoh,A.Furube,T.Yoshihara,K.Hara,G.Fujihashi,S. Takano,S.Murata,H.Arakawa,and M.Tachiya,"Efficiencies of
electron injection from excited N3 dye into nanocrystalline
semiconductor (ZrO2,TiO2,ZnO,Nb2O5,SnO2,In2O3)films,"J.Phys. Chem. B,vol.108,2004,pp.4818-4822.
24.M.K.Nazeeruddin,P.Pechy and M.Gratzel,"Efficient
panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex,"Chem.Commun.,1997,pp.1705-1706.
25.M. Gratzel,"Perspectives for Dye-sensitized
nanocrystalline solar cells,"Prog.Photovolt.Res.Appl.,
vol.8,2000,pp.171-185.
26.M. Gratzel,"Dye-sensitized solar cells,"Journal of Photochemistry and Photobiology C:Photochemistry Reviews, vol.4,2003,pp.145-153.
27.S.Hao,J.Wu,Y.Huang and J.Lin,"Natural dyes as
photosensitizers for dye-sensitized solar cell,"Solar
Energy,vol.80,2006,pp.209-214.
28.A.S.Polo,and N.Y.M. Iha,"Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba,"Solar Energy Materials and Solar
Cells,vol.90,2006,pp.1936-1944.
29.K.Tennakone,G.R.R.A.Kumara,I.R.M.Kottegoda,V. P. S. Perera,G.M.L.P.Aponsu,and K.G.U.Wijayantha,"Deposition of thin conducting films of CuI on glass,"Solar Energy Materials and Solar Cells,vol.55,1998,pp.283-289.
30.P.M.Sirimanne,T.Shirata,T.Soga,and T.Jimbo,"Charge generation in a dye-sensitized solid-state cell under
different modes of illumination,"Journal of Solid State
Chemistry,vol.166,2002,pp.142-147.
31.A. Kay and M.Gratzel,"Low cost photovoltaic modules
based on dye sensitized nanocrystalline titanium dioxide and carbon powder,"Solar Energy Materials and Solar Cells},vol.44,1996,pp.99-117.
32.A.Hauch,and A.Georg,"Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells,"Electrochimica Acta,vol.46,2001, pp. 3457-3466.
33.T.N.Murakami,S.Ito,Q.Wang,M.K.Nazeeruddin,T.Bessho,I. Cesar,P.Liska,R.H.Baker,P.Comte,P.Pechy,and M.Gratzelz,"Highly efficient dye-sensitized solar cells
based on carbon black counter electrodes,"Journal of The
Electrochemical Society,vol.153,no.12,2006,pp.A2255-A2261.
34.T.Hino,Y.Ogawa and N.Kuramoto,"Preparation of
functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell,"Carbon,vol.44,2006,pp.880-887.
35.J.Desilvestro,M.Gratzel,L.Kaven,and J.Moser,"Highly efficient sensitization of titanium dioxide,"J.AM.Chem.Soc,vol.107,1985,pp.2988.
36.高峰等人,染料敏化納米晶TiO2太陽能電池研究進展,廣州化工,第三十四卷,第一期,第8-11頁。
37.G. P. Smestad,"Education and solar conversion:Demonstrating electron transfer,"Solar Energy Materials and Solar Cells,vol.55,1998,pp.157-178.
38.莊嘉琛編譯,太陽能工程-電池偏,台北市:全華科技圖書股份有限公司,1997,第2-11,3-20頁。
39.G.Boyle,Renewable Energy,Stock:Oxford University Press, 2004,pp.89-136.
40.L.A.A.Pettersson,L.S.Roman,and O.Inganas,"Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,"Journal of Applied Physics, vol. 86, 1999, pp.487-496.
41.A.Olea,G.Ponce,and P.J.Sebastian,"Electron transfer via organic dyes for solar conversion,"Solar Energy Materials and Solar Cells,vol.59,1999,pp.137-143.
42.D.Cahen,G.Hodes,M.Gratzel,J.F.Guillemoles,and I.
Riess,"Nature of photovoltaic action in dye-sensitized solar cells,"J. Phys. Chem.,vol.104,2000,pp.2053-2059.
43.A.B.Kashyout,M.Soliman,M.El Gamal, and M.Fathy,"Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells,"Materials Chemistry and Physics,vol.90,2005,pp.230-233.
44.G.Srnestad,"Testing of dye sensitized TiO2 solar cells II:Theoretical voltage output and photoluminescence efficiencies,"Solar Energy Materials and Solar Cells,vol. 32,1994,pp.273-288.
45.Michael Gratzel,"Photoelectrochemical cells,"Nature, vol.44,no.15,pp.338-344.
46.A.L.Linsebigler,G.Lu,and J.T.Yates,"Photocatalysis on TiO2 surfaces:principles,mechanisms,and selected results," Chem.Rev.,vol.95,1995,pp.735.
47.陳軍等編著,新能源材料,台北市:五南圖書出版股份有限公司,2004,第15-64頁。
48.Y.Wang,Y.Hao,H.Cheng,J.Ma,B.Xu,W.Li, and S.Cai,"The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+~-doped TiO2 electrode,"Journal of Materials Science,vol.34,1999,pp.
2773-2779.
49.S.Hore,C.Vetter,R. Kern,H.Smit,and A.Hinsch,"Influence of scattering layers on efficiency of dye-sensitized solar cells,"Solar Energy Materials and Solar Cells,vol.90,2006, pp.1176-1188.
50.S.Ngamsinlapasathian,T.Sreethawong,Y.Suzuki,S.Yoshikawa,"Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell,"Solar Energy Materials and Solar Cells,vol.2005,pp.269-282.
51.葛偉傑等人,染料敏化太陽能電池TiO2製備及多孔電極膜研究進展, 環境化學,第二十四卷,第六期,第726-730頁。
52.T.A.Heimer,S.T.D'Arcangelis,F.Farzad,J.M.Stipkala,and
G.J.Meyer,"An acetylacetonate-based semiconductor-ensitizer
linkage,"Inorg. Chem.,vol.35,1996,pp.5319-5324.
53.葉育材編著,光合作用-植物生產力的生理基礎,台北市:國立編譯館,1982,第11-96頁。
54.N.J.Cherepy,G.P.Smestad,M.Gratzel,and J.Z.Zhang,"Ultrafast electron injection:implications for a
photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode,"J.Phys.Chem.B, vol.101,1997,pp.9342-9351.
55.Q.Dai,and J.Rabani,"Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes,Journal of Photochemistry and Photobiology A:Chemistry,vol.148,2002, pp.17-24.
56.張勝凱,觀賞鳳梨花青素分析之研究,碩士論文,國立屏東科技大學農園生產系,屏東,2005。
57.M.Guo,P.Diao,Y.J.Ren,F.Meng,H.Tian,and S.M.Cai,"Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes,"Solar Energy Materials and Solar Cells,vol.88,2005,pp.23-35.
58.陳炳輝,類胡蘿蔔素的特性與應用,科學發展月刊,第二十八卷,第八期,2000,第599-604頁。
59.吳謀成編著,儀器分析,北京:科學出版社,2003,第6-43頁。
60.A.J.Frank,N. Kopidakis,and J.V.D.Lagemaat,"Electrons in nanostructured TiO2 solar cells:transport,recombination and photovoltaic properties,"Coordination Chemistry Reviews,vol.248,2004,pp.1165-1179.
61.馬振基編著,奈米材料科技原理與應用,台北市:全華科技圖書股份有限公司,2003,第2-15~2-17頁。
62.盧永坤編著,奈米科技概論,台中市,滄海書局,2005,第14-58頁。
63.A.K.Jana,"Solar cells based on dyes,"Journal of Photochemistry and Photobiology A:Chemistry,vol.132,1999, pp.1-17.
64.H.Lindstrom,A.Holmberg,E.Magnusson,S.E.Lindquist,L. Malmqvist,and A.Hagfeldt,"A new method for manufacturing
nanostructured electrodes on plastic substrates,"Nano
Letter,vol.1,no.2,2001,pp.97-100.
65.K.Imoto,K.Takahashi,T.Yamaguchi,T.Komura,J.Nakamura,and K.Murata,"High-performance carbon counter electrode for dye-sensitized solar cells,"Solar Energy Materials and Solar Cells,vol.79,2003,pp.459-469.
66.賴耿陽編著,碳材料化學與工學,台南市:復漢出版社,1991,第~7-10、199-121~頁。
67.李景虹編著,先進電池材料,中國北京市:化學工業出版社,2004,第179-194頁。
68.李全臣等編著,光譜儀器原理,中國北京市:北京理工大學出版社,1999,第~18-49、190-221~頁。
69.S.S.Likhodii,I.Serbanescu,M.A.Cortez,P.Murphy,O.C.Snead III,and W.M.Burnham,"Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet,"Annals of
Neurology,vol.54,2003,pp.219-226.
70.李鳳生等編著,微奈米粉體後處理技術及應用,中國北京市:國防工業出版社,2005,第~12-47~頁。
71.閻子峰編著,納米催化技術,中國北京市:北京工業出版社,2003,第~28-117~頁。
72.曾仁傑,葡萄皮中花青素最佳粹取條件之評估及其經驗模式之建立},碩士論文,國立屏東課技大學食品科學系,屏東,2002。
73.常建華等編著,波譜原理及解析,北京:科學出版社,2005,第23-24頁。
74.方惠群等編著,儀器分析學習與指導,中國北京市:科學出版社,2004,第167-177頁。
75.宋明俊,複金屬燈特性研究,碩士論文,國立中山大學電機工程學系,高雄,2000。
76.M. Sugiura,"Review of metal-halide discharge-lamp development 1980-1992,"IEE Proceedings A,vol.140,1993,pp. 443-449.
77.許明晃,甘藷葉片色素含量與反射光譜關係之研究,博士論文,國立台灣大學農藝學系,台北,2003。
78.V.P.S.Perera,P.K.D.D.P.Pitigala,M.K.I.Senevirathne,and K.Tennakone,"A solar cell sensitized withth ree different dyes,"Solar Energy Materials and Solar Cells,vol.85,2005, pp.91-98.
79.W.R.Duncan,W.M.Stier,and O.V.Prezhdo "Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin-TiO2 interface,"J.AM.CHEM. SOC.,vol.127,2004,pp.7941-7951.

 


客服專線 0800-000747 886-2-82215585  客服傳真 886-2-82215586
華藝數位股份有限公司 版權所有 ©2006 All Rights Reserved